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LAMINAR BOUNDARY-LAYER SEPARATIOPT INDUCED BY FLARES 

ON CYLINDERS W I T H  HIGHLY COOLED BOUNDARY LAYERS 

AT A MACH NUMBER OF 15 

By Donald M. Kuehn 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

Incipient  separation of a laminar boundary layer  w a s  experimentally 
investigated on a blunted cyl inder-f lare  configuration a t  zero angle of 
a t tack .  Conical f l a r e s  with various angles were t e s t e d  with each of three 
nose shapes i n  a i r  a t  a nominal Mach number of 15. The nose shapes included 
a spherical-t ipped cone, a hemisphere, and a f l a t  face .  Equilibrium stagna- 
t i o n  temperature w a s  about 3600°R, and the surface temperature of the models 
w a s  about 550' R; thus the boundary layers  on a l l  models were highly cooled. 
The Reynolds numbers, based on free-stream propert ies  f o r  equilibrium flow 
and on cylinder diameter, were about 2400 and 6200. 
believed t o  occur a t  a f l a r e  angle between 35' and 40' f o r  a l l  three nose 
shapes. 
showed t h a t  the very low Reynolds number and substantialboundary-layer cool- 
ing of the present  t e s t s  were highly favorable f o r  maintaining an attached 
boundary layer  f o r  very large flow-deflection angles. 

Incipient  separation w a s  

A comparison of the present data  with previously published data  

INTRODUCTION 

Gasdynamic propert ies  a t  the surface must be known i n  order t o  pred ic t  
the f l i g h t  c h a r a c t e r i s t i c s  of a vehicle .  In  many cases these propert ies  a re  
a l t e r e d  s u f f i c i e n t l y  by the  occurrence of boundary-layer separation so  t h a t  
it i s  necessary t o  know whether the boundary layer  w i l l  be attached or sepa- 
ra ted .  Existing theor ies  do not successfully pred ic t  the flow conditions and 
body geometries f o r  which separation can be expected. Experimental data  t h a t  
can be used t o  pred ic t  separation have therefore  been obtained (e .g . ,  r e f s .  1 
and 2);  however, more experiments a r e  required f o r  body shapes and t e s t  con- 
d i t ions  f o r  which there  a r e  no data .  

The purpose of the present  experimental invest igat ion i s  t o  contribute 
t o  the knowledge of incipient ,  laminar boundary-layer separation. The t e s t  
conditions of the experiments on cyl inder-f lare  configurations reported i n  
reference 2 were extended i n  the present t e s t s  t o  a lower Reynolds number, 
t o  a higher free-stream Mach number, and t o  a s igni f icant  amount of boundary- 
layer  cooling. These t e s t  conditions approximately correspond t o  f u l l - s c a l e  
f l i g h t  a t  a Mach number of 15 and an a l t i t u d e  between 200,000 and 3OO,OOO fee t .  



The occurrence of separation w a s  estimated from measurements of surface pres -  
sures on models with and without flares. I n  order t o  f a c i l i t a t e  comparison of 
present and previous da ta  and t o  permit appl ica t ion  of t h e  da ta  t o  cases other  
than those tes ted ,  approximate ca lcu la t ions  w e r e  made of t he  inv isc id-v isc id  
attached flow about t h e  models without the flares. 
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cyl inder  diameter, i n .  

enthalpy, Btu/lb 

dis tance from the  t i p  of the  model nose t o  t h e  beginning of t he  
f l a r e ,  i n .  

Mach number 

pressure,  p s i a  

pressure on the  cylinder a t  s t a t i o n  x 

r a d i a l  dis tance measured from the  longi tudina l  ax is  of t h e  cy l in-  
der,  i n .  

Reynolds number 

temperature, R 0 

distance along t h e  cyl inder  ax i s  measured f r o m  the  t i p  of t he  nose, 
o r  dis tance from the  leading edge of a f l a t  p l a t e ,  i n .  

t he  approximate value of x t o  t h e  f a r t h e s t  upstream influence of 
t he  f l a r e  on the  surface pressures,  i n .  

half-angle  of t h e  conical  f l a r e ,  deg 

boundary-layer thickness,  i n .  

Sub s c r i p t  s 

D,x, 6 reference dimensions f o r  Reynolds number 

e boundary-layer edge 

n nose of t h e  model 
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t t o t a l  conditions 

W w a l l  of t he  model 

co free stream 

incip condition f o r  i nc ip i en t  separat ion 
A 

1 upstream of the  normal shock wave 

TEST CONDITIONS, MODELS, AND MEASUREMENTS 

The t e s t  conditions and the  instrumentation were the  same as were used 
i n  the  experiments reported i n  reference 3. The b lunt  cylinders were a l so  
the  same except f o r  f l a r e s  which were added f o r  the present  t e s t s .  Appropri- 
a t e  discussion i n  reference 3 is ,  therefore ,  appl icable  t o  the  present  repor t  
To avoid unnecessary dupl icat ion only se lec ted  per t inent  information w i l l  be 
repeated here.  
descr ipt ion of flow proper t ies  can be found i n  r e f .  3 . )  

(Detai ls  of the  t e s t  apparatus and the  determination and 

Test Conditions 

The models w e r e  t e s t e d  i n  an arc-heated air stream. A nominal Mach 
number of 15 w a s  a t t a ined  with a conical  nozzle of l 5 O  half-angle.  
of Mach number and pressure along the  nozzle center  l i n e  due t o  the  conical  
flow are shown i n  reference 3. Total  enthalpy w a s  about 1000 Btu/lb; nozzle 
reservoi r  pressures were about 380 and 1000 p s i a .  
equilibrium stream proper t ies  and on cylinder diameter, were about 2400 and 
6200. 
models w a s  considered i n  reference 3.  The amount of energy involved i n  the  
nonequilibrium process w a s  s o  s m a l l  t h a t  the  f l o w  can be considered t o  be i n  
equilibrium. 

Gradients 

Reynolds numbers, based on 

The presence of nonequilibrium flow i n  the  t e s t  nozzle and over the  

Models 

The models were b lunt ,  stream-alined cyl inders  with conical  f l a r e s .  
The geometry of t he  models i s  shown i n  f igu re  1. 
base diameter of t he  3 5 O  f lare  was decreased t o  prevent tunnel blockage. 
Consequently, t he  shape of t h i s  f lare  d i f fe red  from the  o thers .  
s t a t i c  pressure o r i f i c e  w a s  located i n  one sect ion of t he  cyl inder .  To 
obtain pressures a t  o ther  s t a t i o n s  cy l ind r i ca l  extensions were in se r t ed  
between the  nose and t h a t  sect ion which contained the o r i f i c e .  The loca t ion  
of t h e  nose w a s  maintained a t  the  same tunnel s t a t i o n  f o r  a l l  cy l ind r i ca l  
extensions. The longi tudinal  pos i t ion  of t h e  flare on t h e  cylinder w a s  

During the  tes t  period the  

A s ing le  
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adjusted t o  maintain the  cylinder length shown i n  f igure  1. 
from the  t i p  of t h e  nose t o  the  f lare  w a s  not  the same f o r  a l l  models because 
of t he  s l i g h t l y  d i f f e ren t  nose lengths.  

The dis tance 

Measurements 

Measurements of cylinder-surface pressures  and photographs of t he  shock- 
wave pa t te rns  were obtained. 
the  output of each transducer w a s  measured with an  Offner recorder: The dura- 
t i o n  of a t y p i c a l  run w a s  about 4 seconds which, from the  work of reference 3, 
allowed s u f f i c i e n t  time t o  overcome the  l ag  i n  the  pressure-measuring system. 
Copper tubing was  used throughout the  pressure-measuring system, except where 
shor t  sect ions of p l a s t i c  connectors w e r e  necessary. The system w a s  thor -  
oughly evacuated f o r  severa l  days before any measurements were made. 
shock waves about t he  models w e r e  observed by the  use of the  glow-discharge 
technique (described b r i e f l y  i n  ref .  3 ) .  Selected photographs are shown i n  
f igure  2. The por t ion  of t he  flare-induced shock wave t h a t  w a s  v i s i b l e  i n  
each of the  o r i g i n a l  photographs w a s  t raced with dashed l i n e s  i n  the  bottom 
half  of the  photograph. 

Pressure t ransducers(see re f .  3 )  w e r e  used and 

The 

FLESULTS AND DISCUSSION 

Attached Flow About t he  Blunt Cylinders 

I n  t h i s  study of flare-induced boundary-layer separation, a descr ipt ion 
w a s  needed of t he  l o c a l  inviscid-flow proper t ies  and the  attached boundary 
layer  s o  t h a t  t he  present  da ta  on inc ip ien t  separat ion would be usefu l  i n  
the  predict ion of separation on other  vehicles  having s imi l a r  local-flow 
proper t ies .  The local-flow proper t ies  considered t o  be the  most important 
t o  separat ion are Mach number, boundary-layer-edge Reynolds number, and the  
amount of boundary-layer cooling (e .g . ,  see refs.  1 and 2 ) .  The inviscid 
flow over the  present  b lunt  cylinders i s  characterized by la rge  var ia t ions  i n  
l o c a l  Mach number and Reynolds number along, and normal t o ,  the streamlines.  
A t h i ck  laminar boundary l aye r  i s  probable f o r  t he  low Reynolds number of the 
present  tes ts .  Tnis boundary layer  w i l l  extend far i n t o  the  nonuniform flow 
f i e l d  and w i l l  therefore  be subjected t o  a wide range of local-flow proper- 
t i es .  This, of course, complicates t he  boundary-layer thickness calculat ions.  
An accurate analysis  of t he  viscid- inviscid flow f o r  these circumstances w a s  
beyond the  scope of t he  present  invest igat ion.  Therefore, an approximate 
analysis  w a s  made. The a i r  i n  the t e s t  nozzle and over the  model was  assumed 
t o  be i n  equilibrium. (The difference between frozen and equilibrium values 
of Mach number and Reynolds number a t  t h e  w a l l  f o r  inv isc id  flow are less 
than 10 percent and 20 percent,  respect ively.  These differences were proba- 
b l y  not  s ign i f i can t  t o  the estimated boundary layer, or t o  inc ip ien t  separa- 
t i o n . )  
cylinder and any in te rac t ion  between the  v i sc id  and inv isc id  flow w a s  
neglected. 

F la t -p la te  theory w a s  used i n  estimating the  boundary layer  on the  



The propert ies  of inviscid,  equilibrium a i r  f l o w  around the  blunt  cy l in-  
ders were estimated at  severa l  longi tudinal  s t a t ions  by means of t he  cont i -  
nu i ty  method of reference &'which i s  shown i n  reference 5 t o  give a fa i r  
descr ipt ion of t h e  over -a l l  flow f i e l d .  
bers  determined by these inviscid-flow calculat ions are shown i n  f igu re  3. 

Mach numbers and u n i t  Reynolds num- 

Van Dr ie s t ' s  f l a t - p l a t e  theory ( r e f .  6) w a s  used t o  estimate the  th ick-  
ness of t h e  laminar boundary layer  f o r  each of the  b lunt  cyl inders  (an e s t i -  
mate discussed i n  the  following paragraph indicated t h a t  t he  boundary layer  
probably w a s  laminar).  Simplici ty  w a s  the primary j u s t i f i c a t i o n  f o r  using 
f l a t - p l a t e  theory; however, a l imi ted  comparison ( f i g .  4) of t h e  boundary- 
layer  thickness f r o m  f l a t - p l a t e  theory with experimental values f r o m  the  
invest igat ions reported i n  references 2 and 7 indicated t h a t  t h i s  estimate 
might be su i tab le ,  a t  least f o r  t h i n  boundary l aye r s .  The app l i cab i l i t y  of 
t h i s  f l a t - p l a t e  estimation i s  unknown f o r  t h i ck  axisymmetric boundary layers  
a t  high free-stream Mach numbers where there  i s  a s ign i f i can t  var ia t ion  o f  
flow proper t ies  through, as wel l  as along, t he  boundary layer  ( t h e  estimated 
value of boundary-layer thickness on the  present cyl inders  w i l l  be shown l a t e r  
t o  be -0.6D). 
p l a t e  Reynolds number t h a t  w i l l  give a boundary-layer thickness equal t o  t h a t  
of an axisyrmnetric boundary layer  i n  the  environment j u s t  described. Lacking 
t h i s  ins ight ,  t he  thicknesses of f l a t - p l a t e  boundary layers  were determined i n  
the  present analysis  f o r  t he  two values of edge u n i t  Reynolds numbers bel ieved 
t o  represent t he  approximate extremes t h a t  could a f f e c t  t he  growth of t he  
boundary layer ;  one value represented the  minimum Reynolds number at the  
boundary-layer edge ( f a r t h e s t  downstream) and the  other  represented the  maxi- 
mum edge Reynolds number ( f a r t h e s t  upstream). 
Reynolds number determined a t  the  s t a t ion  a t  which the  f lare  w i l l  begin 
( f i g .  3) was used t o  compute a f l a t - p l a t e  boundary layer .  
f i e l d  w a s  then examined t o  e s t ab l i sh  the  minimum Reynolds number along the  
edge of t he  boundary layer .  T h i s  minimum Reynolds number w a s  then used t o  
recompute the  boundary layer .  The procedure w a s  repeated u n t i l  t he  minimum 
edge Reynolds number agreed approximately with the  value used i n  the  calcula-  
t i on .  The thickness of t h i s  boundary layer  was bel ieved t o  be the  approxi- 
m a t e  maximum. The approximate minimum w a s  determined f rom values of maximum 
Reynolds number along the  boundary-layer edge. The ac tua l  boundary layer  
probably develops according t o  some integrated value of Reynolds number along 
the  boundary layer  t h a t  w i l l  l i k e l y  be between t h e  minimum and maxirrrum values 
j u s t  described. 
as the  reference dimensions f o r  Reynolds number. 

It i s  not c lear ,  therefore ,  how t o  choose the  value of f l a t -  

For a f i r s t  approximation, w a l l  

The inv isc id  flow 

These values of boundary-layer thickness ( f i g .  3) were used 

Length Reynolds number based on proper t ies  a t  the edge of t h e  estimated 
boundary layer  indicated t h a t  t he  boundary layer  w a s  laminar. A n  approximate 
upper l i m i t  of the  length Reynolds number t o  the  beginning of  the  f l a r e ,  
based on the  maximum value of Re/inch ( f i g .  3 ) ,  w a s  about lo4. The length 
Reynolds number based upon an in tegra ted  value of 
l aye r  could be considerably l e s s  than lo4, however, because Re/inch decreases 
very rap id ly  downstream along t h e  boundary-layer edge. Since the  minimum 
t r a n s i t i o n  Reynolds number i s  probably of the  order of lo6, t r a n s i t i o n  appears 
t o  have been downstream of the  region of i n t e r e s t  by a safe  margin. 

Re/inch along the  boundary 



Another ind ica t ion  of t he  boundary-layer thickness can be deduced from 
the  flare-induced shock wave i n  the  glow-discharge photographs. Generally, a 
laminar boundary l aye r  f i l l s  i n  (or e f f e c t i v e l y  rounds) a sharp corner so t h a t  
t h e  ex terna l  flow i s  turned gradually. For t h i n  boundary layers ,  t h i s  gradual 
turning generates weak waves (not apparent i n  visual-flow photographs ) t h a t  
coalesce i n t o  a strong, v i s i b l e  shock outs ide of t h e  boundary l aye r  (e.g. ,  
see r e f .  2 ) .  If t h e  coalesced shock wave always appears outs ide of t he  l a m i -  
nar boundary l aye r  f o r  th icker  boundary layers  a lso,  an upper l i m i t  t o  t he  
boundary-layer thickness on t h e  present  models might be indicated by the  d i s -  
tance from t h e  body surface t o  the  f i r s t  appearance of t h i s  shock i n  the  
photographs of f igu re  2. 
d e t a i l s  t h a t  were apparent i n  the  or ig ina ls ,  s o  shock waves t h a t  were v i s i b l e  
i n  the  o r i g i n a l  photographs were t raced with dashed l i n e s  i n  the  lower ha l f  
of t he  photographs.) By t h i s  c r i t e r ion ,  t h e  photographs of t he  models with 
attached flow ( e  ?: 35') indicate  t h a t  t he  boundary layer  i n  the  region of t he  
cy l inder - f la re  juncture was,  i n  general, no th icker  than about one ha l f  the  
shock-layer thickness .  This upper l i m i t  i s  cons is ten t  with the  rough theo- 
r e t i c a l  es t imate .  

(Reproduction of low cont ras t  photographs loses  

Inc ip ien t  Boundary -Layer Separation 

Surface pressure d i s t r ibu t ions  were used t o  de tec t  t h e  occurrence of 
boundary-layer separat ion.  These pressure d i s t r ibu t ions  on cylinders with 
f l a r e s  (present  measurements) and without f l a r e s  ( r e f .  3 )  are shown i n  f i g -  
ures  5 t o  7 .  The measured pressures were not corrected f o r  t he  nozzle-stream 
gradient  s ince  t h e  correct ions would not a f f e c t  t he  comparison between the  
pressure d i s t r ibu t ions  with and without a f l a r e .  

The occurrence of f l a r e  -induced boundary-layer separation w a s  judged by 
examining the  upstream influence of t h e  flare on t h e  cyl inder  surface pres-  
sures. This upstream influence,  obtained f rom f igu res  5 t o  7, i s  shown i n  
f i g u r e  8 as a funct ion of flare angle f o r  each nose shape. 
obtained i n  previous invest igat ions of boundary-layer separation (e. g.  , refs. 1 
and 2) showed t h a t  t he  upstream influence of a compression corner on surface 
pressure i s  smaller and l e s s  sens i t ive  t o  changes i n  corner angle f o r  an 
attached boundary l aye r  than f o r  a separated boundary layer .  On t h i s  bas i s ,  
t h e  abrupt change i n  the  upstream influence t h a t  occurred as t h e  f l a r e  angle 
on the  conical-nosed model w a s  increased f rom 35' t o  40° (see f i g .  8) w a s  
in te rpre ted  t o  be ind ica t ive  of the  occurrence of s ign i f i can t  separation. (The 
p o s s i b i l i t y  t h a t  a detached shock at t h e  f l a r e  w a s  responsible f o r  the  abrupt 
changein the  upstream influence i s  bel ieved t o  be unl ikely,  as discussed i n  
the  following paragraph.) The hemispherical- and f la t -nosed  models were not 
t e s t e d  with a s u f f i c i e n t  number of f l a r e  angles t o  determine the  angle a t  
which the  upstream influence changed abruptly.  It i s  believed, however, t h a t  
the rate of change of upstream influence with f l a r e  angle should be about t he  
same f o r  a l l  nose shapes. This be l i e f  i s  supported by references 1 and 2 
which show t h a t  f lare-induced separation on cyl inders  with d i f f e ren t  nose 
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shapes is  q u a l i t a t i v e l y  similar. The conclusion is ,  therefore,  t h a t  the f i rs t  
occurrence of separation appears t o  take place a t  a flare angle between 3 5 O  
and 40' f o r  a l l  three nose shapes. 

Although the  l a r g e s t  f lare angle used i n  the  present  invest igat ion 
s l i g h t l y  exceeded t h e  two-dimensional shock-detachment angle, it i s  not prob - 
able  t h a t  shock detachment caused the  abrupt change i n  upstream influence. A 
two -dimensional shock-detachment angle would apply t o  inv isc id  flow; however, 
the  presence of a boundary layer  w i l l  cause a s igni f icant  departure from two- 
dimensional flow. Reference 1 contains evidence t h a t  viscous flow i n  the 
region of a cyl inder-f lare  juncture i s  not two-dimensional and gives several  
examples where the f l a r e  angle has exceeded the two-dimensional detachment 
angle with no apparent evidence of shock detachment. 
t u r e  from two-dimensional flow can be estimated by computing the theore t ica l  
values of pressure r i s e  f o r  two-dimensional and conical  flow and comparing 
these values with the  experimental pressure d is t r ibu t ions  of reference 1. 
This comparison shows t h a t  t h e  maximum pressure r i s e  on the f l a r e ,  which 
occurs near t h e  corner, w a s  lower than t h e  two-dimensional value by about 
70 t o  80 percent of the difference between the two-dimensional and conical 
values.  Therefore, the  shock-detachment angle i s  probably much closer  t o  the 
conical  than t o  the two-dimensional value. 
experiments were much th icker  than those of reference 1; thus the departure 
from two-dimensional flow i n  the  present experiments should be even greater  
than t h a t  of reference 1. Using the minimum value of inviscid Mach number 
near the beginning of the f l a r e  f o r  the blunt  conical-nosed model of the pres -  
en t  invest igat ion w i l l  give a shock detachment angle f o r  two-dimensional flow 
of about 3 7 O  and f o r  conical  flow about 52O. From the  above discussion, it 
appears t h a t  t h e  detachment angle f o r  the present  f l a r e s  should be wel l  above 
the  maximum f l a r e  angle t e s t e d .  Further evidence t h a t  shock detachment did 
not occur i s  indicated by the Reynolds number e f f e c t  on the extent  of 
boundary-layer separation shown i n  f igures  5 ( e )  and 5 ( f ) .  Shock detachment 
i s  not l i k e l y  t o  be s o  sens i t ive  t o  Reynolds number var ia t ion,  whereas the 
Reynolds number e f f e c t  shown i n  t h i s  f igure i s  consis tent  with previous 
invest igat ions f o r  a separated boundary layer  not influenced by shock detach- 
ment (e.g. ,  r e f s .  1 and 2 ) .  

The magnitude of depar- 

The boundary layers  i n  the present 

Previous invest igat ions have shown t h a t  Reynolds number and boundary- 
layer  cooling a r e  important t o  separation, but  more da ta  a r e  required so t h a t  
the quant i ta t ive e f f e c t s  of these two var iables  can be determined over a 
wider range of t e s t  conditions.  The present data  provide some information on 
these two var iables  a t  a very low Reynolds number; however, the individual 
e f f e c t s  of Reynolds number and boundary-layer cooling cannot be distinguished. 
Existing data  show t h a t  the  tendency toward separation i s  reduced as Reynolds 
nuniber i s  decreased f o r  an adiabat ic  w a l l ,  or as boundary-layer cooling is  
increased a t  a constant Reynolds number (e .g . ,  r e f s .  2, 8, 9, 10). 
the  small Reynolds number range covered i n  the  present  tests, Reynolds num- 
ber  continues t o  be important f o r  highly cooled w a l l s  (cf, f i g s .  5(e) and 5 ( f ) ) .  
This e f fec t  of Reynolds number i s  q u a l i t a t i v e l y  the same as shown-by the data  
f o r  adiabat ic  w a l l s  ( r e f .  2 ) .  
plus  s u b s t a n t i a l  boundary-layer cooling on the  f lare angle f o r  incipient  
separation can be seen i n  f igure  9 where the present  da ta  a r e  compared with 

Even f o r  

The combined e f f e c t  of low Reynolds number 



t h a t  of reference 2. Only one data  poin t  i s  shown f o r  t he  present  da ta  
because the  estimates of local-flow proper t ies  f o r  t he  present  models were not 
s u f f i c i e n t l y  accurate t o  d i f f e r e n t i a t e  between the  d i f f e r e n t  models. Thus a 
range of conditions i s  shown by the  bars  and includes the  estimates f o r  a l l  
models. 

CONCLUDING .EZMRKS 

Comparison of the  present  and ex i s t ing  experiments showed t h a t  the  maxi- 
mum angle through which the  laminar boundary l aye r  would turn  and remain 
attached w a s  considerably increased by the  combined influence of very low 
Reynolds number plus  subs t an t i a l  boundary-layer cooling. In  these experiments, 
t h e  boundary layer  turned through an angle g rea t e r  than 35' without separat ing 
from the  surface,  whereas previous da ta  f o r  uncooled, laminar boundary layers  
a t  higher Reynolds numbers showed the  turning angle t o  be about 10' or l e s s .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Ca l i f . ,  Oct. 23, 1964 
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Figure 1. - T e s t  models. 
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(b) Flares. 

Figure 1. - Concluded. 
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0 (a) Blunt conical nose; 0 = 25 . 

0 (b) Blunt conical nose; 8 = 35 . 
Figure 2.- Typical photographs of the flow field using the glow-discharge 

technique. 



0 (e) Blunt conical nose; 8 = 40 . 

0 ( a )  Hemispherical nose; 8 = 25 . 
Figure 2. - Continued. 



0 
(e) Hemispherical nose; 8 = 35 - 

0 
( f )  F l a t  nose; 8 = 40 . 
Figure 2. - Concluded. 
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R,D -6200. 
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P plate theory. 
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Figure 5 . -  Surface pressure d is t r ibu t ions  on the  b lunt  conical-nosed cylinder 
= 14.4, h t  = 1000 Btu/lb . n with and without a flare; M, 
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